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ON THE NATURE OF THE
P | { RADIAL AND CROSS TRACK ERRORS
S : i
- - FOR ARTIFICIAL EARTH SATELLITES
B N. L. Bonavito
- ,k R. A. Gordon
z_l J. G. Marsh
- ABSTRACT
A :
3 In this paper we discuss the analysis of the radial and cross track errors
i
I3
3 of artificial Earth satellites in terms of the interference of two one dimensional
5 .
celestial mechanical wave trains. The resulting equations for these tracking
g errors describe the behavior of the uncertainties in the orbital parameters as
oscillatory in nature, with a rapidly oscillating term, which is a functior of the
‘ sum of the observed and computed orbital frequencieé, modulated in amplitude
3
by a slowly varying cscillation. This latter term is itself a function of either
the difference between these orbital frequencies or between the values of the

computed and observed right ascensions, depending upon whether it is the radial
or cross track case under consideration. In theoretical physics, this effect is
referred to as the phenomenon of beats and is common in the physics of sound
and élastic media, These results indicate that the cross track calculation describes
the behavior of uncertainties in the right ascension of the ascending node and

the inclination, while th: radial ralculation gives information on uncertainties in
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the semi-major ajgls, the eccentricity, and the argument of perigee. Apélysfs is
done 't_'o'r_th'e U.. S, Aii' Force Cannonball (OAR-901) and GEOS-II satellites.

In addition, expressions for the radial and cross track oscillétory fre-

quehqies are obtained in terms of the orbital frecuencies of the satellites. These

Ty oscillatbry frequencies are functions only of the zohal harmonic ¢ .: 'ms of the
i Earth's giavitational potential, and are used to analyze the behavior of tke
tracking errors in terms of uncertainties in the gravitational field coefficients.

Finally, we show that the time average of the radial and cross track errors

in any case, will both approach zero.

i)




I. INTRODUCTION

There has been cdnsfderable interest in the error analysis of spacecraft
frajeétory systems. Error analysis can be defined as the ability to descrioe
the effect of inherent uncertainties of an overall orbital determination system

on the computational accuracy of the system. There are several sources re-

et A

sponsible for the presénce of such urcertainties, with perhaps the moét im-
portant due to the inability to correctly d;ssc'ljibe the physics of the problem.

‘As a result, the physical data that is used, and the modelling of the forces involved,
provide at best, only a good starting point for the calculation of an orbit. The
accuracy of the observational data will depend upon the type and quality of the -

'Q | 'tracking technique that is employed. Even affter fitting an orbit, the post con-
vergence residuals do not account for uncertainties in coordinates of the track-
ing sites. More imbortant, even though {he constants of integration may be well
determined, the accuracy of the calculated orbit will still depend upon the accu-
racy of the differeniial equations of motion. In any event, the overall qncertainty
in the calculated coordinates of a spacecraft can be defined within the framework
of a time dependent erroxr bound (Reference 1). One method of studying the effect
] " of uncertainties in -orbit -determination is to examine the radial and cross track

- errors. The cross track error is defined as the difference at any instant of

T W DLWRTE T

time, between the position vectors of a.n' observed and calculated, or two calcu-
lated orbite, projected in the direction of the unit angular momentum vector of

one of these systems, provided that both systems are conservative ones. In
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addition, the radial error is defined as this same difference projected along the
instantaneous uh_it radius vector of one of the orbits. If the orbit system can
be considered as a conservative one, then calculation of the radial and cross-
track errors can be used to study errérs produced by various gravity models.
Such results are of considerable importance in the field of geodesy.

In this paper we shall review these concepts in the light of classical theo-
retical physics and « ompare the results with real and simulated data of various

orbit systems.

. STATELR"TNT OF THE PROBLEM
Let us now define an inertial coordinate system, fixed at the Earth's center

with the x-axis pointing toward Aries, z through the geographic North Pole,

and y set so as to form a righthanded system. Then the observed position vector

of a point mass in orbit is given by -;'o = ?xo +73 Yo *+k 2z, where T, 7 and k
are the orthogox:al unit vector set. The observed velocity is given by v, = TV,‘ +

?vy +k v,» and the computed values of these quantities are designated as Fc =

T T - 2 ol i
Tx, +7y. +kz,,andV, =1v, +] +kv

x respectively. From the
c

v
yc

above discussion we then have that the cross track error

N = - A7 )

where Eo = (§, X V,), andAT¥ = (f, - T_). The radial error s given by

- AT (2)

o * - r R [‘ ’ i
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.B_é_fc_:ré proceedipg with a theoretical analysis, let us briefly examine these two
eqt;éﬁ'i_qhs. If we assume that our system is a cdnservative one, thét is, if there
."ir_e.' no for‘ccs present draWing en_grgy from the orbit, _thgn we have that the
Haxmltoman, namely, the kineti;: plus potential energy, is the total energy. In
.adc_l.:ition;'.if time is not explicitly present, then the Hamiltonian is also a constant

-of the ﬁotion Furthermore, the total angular momentum and the z-component |
of. -'ahg.ul'ar. momentum are constants of the motion. Now ihe gravitational potential

energy can be wriiten as a generalized solution of Laplace's equation, namely,

-] n n
r
v =.’ri 1+E E (T') P:(co«s a) (Cn"I| cos mA + Sn.n sinm))
m:

n=1

where p is the product of the gravitational constant and the planet's mass, r,
is its equatorial radius, r and ¢ are the planetocentric distance and colatitude
of a field point, C

and Sn' are the coefficients of potential, A is the angle

of eaét longitﬁde, and PT (cos €) are the associated Legendre functions. In '
practice, one tries (o include all forces in nature acting on the system in the
Hamiltoniarz, and in the process of orbit determination, a complete knowledge

of the geodetic constants and coefficients of the Earth's gravitational potential

is necessary for perfect orbit calculation. Since such information is not available,
and in addition, since present computational techniques are insufficient to main-
tain agreement with observation for more than a few days, then it is customary

to compensate for these errors by reinitializing the constants of integration

through a fitting procedure by comparing theory with observation over an arc of

3
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several days. However, it appears that there may be a limitgtion to what we may

know ubout the gravitational field. For example, the possibility of mass trans-

" port in the liquid outer core of the Earth, even if uniform, would still give rise

to density fluctuslations; In addition,I mass transport aris_ing from rapid first order
phase transitions (condéns_ati.on of ma;ter under enormous pressure) within the
lithosphere could create local density cbax-xges ‘which would correspond to a
creation and des_truction of higher order coefficients in the gravity field. More
advancedG theories indicate that. rapid first order polymorphic phase transitions
may be the source of deep focus earthquakes, manifestin_g as irregularities or
breaks in the Chandler wobble uf the Earth. It is also estimated that during

such an event, enough mass _is shifted so as to cause as much as a 0.1 to 0.4
milligal change in thé local value of gravity. In any event, such considerations
seem to place z temporary if ﬁot permaneﬂt resti‘iction on a complete theoretical
description of the gravitational field and the subsequeht accuracy of the pre-
dicted positions of a spacecraft.

In spite of such limitations however, we can still make the following

- rationalizations: Since the totzl energy, and the angular momentum are constants

of the motion, then the energy difference of the compufed and observed orbits
which is manifest through the spacecraft 1 adius véctor by way of the semi-

major axis, is a bound quantity. As a consequence, one might expect the radial
error {0 be bound, and since the angular momentum i.s consérved, the _cross-track

would be likewise.
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1Ii. INTERFERENCE OF WAVES

The.problem that now suggests itself from the above disc.ussion, is the
nature of the tracking errors arising from an inability to properly or adequately
specify t'he potential energy through the coefficients of the gravitational field.
In actual practice, tracking errors are often ca.lculated by one of the following
methods: For a given potential energy, two partially ov.erlapping arcs of fitteq
data are obtained on a spacecraft by comparing observations of position and
velocity with those r:alculated using 'the given potential. The positions and
velocities in each of the overlapping portions of the ﬁtl;ed arcs corresponding
to a particular time are then used in equations (1) and (2) to determine the
cross and radial track errors. In this case, the potential is fixed, and the
coordinates (within the fitted arcs) are changed. In the other case, poéitions
and velocities of two slightly different orbits are compared at corresponding
times, and the tracking errors are again computed for’ each of thesc times. Here
the initial conditions and the equations of motion are the same, but values of
the coefficients of the Earth's gravitational potential differ slightly for each
orbit.

Technically speaking, interference is a term referring to the physical
effects of superimposing two or more wave trains. As in the case of elastic
media, it is desirable to definz a 'wave equation' which contains information on

the behavior of the system. We now consider the polar equation of an ellipse,

1
v

it T T e AN ot A A BT U VRTINS L L W ST B L T A AW TS TN g L AT P BT Kt LR B YA SIS O M TR DR S AR A G Y L e



r=a(l ~cecosE) . 3)

'\yh'ere a, e, and E are the semi-major axis, eccentricity, and 2ccentric anomaly
respe'cfively. A one dimensional representation of this equation is obtained by
mu.l.tiplying by the cosine of the true anomaly. Therefore,

y=rcosv=a(l -ecos E) cos v, ) “)

and using the anomaly connection for the true and eccentric anomaly,

cosy={0SE-2) (5}
l-ecosE
y = a cos E - ae. (6)

This ié our one-dimensional wave equatiou for elliptic motion of an artificial
satellite, referenced to the major axis of the ellipse.

Let us now consider two waves of equal frequency and amplitude travelling
with the same speed in the same direction, but with a phase difference ¢ between
them. Therefore, with the conditions that a, =a, = a, e, # e,, and E = 27 {t, we

have for the two waves

y, = a cos(2nf,t) - ae, (M)

y,=a cos(2nflt - ¥) - ae,.

- —

. e e ANvmon S+ ame e nd s M ws mm o ts o meae el e e e e - S e e e e s i AR .

1



S it e e o nne s e

e M a————u ) e

R e T Ll o ST PNV

R Ky T e

IR Ty ym s gl Mg e T g6

R

YT e

RS S LT AN

e PSS N S e

The resultant wave vhich is the difference of equations (7) and (8) is,
Y=Y, -y, = (ae, —ae;)~alcos(2nf t) - cos(2rf, + = ;)].

From the trigoaom.etric equation for the differcnce of the éosipes of two angles,

cosA;cosB=—2'sin%(:’\+B)-sin%(A—B). (9)
we obtain,
. . r R iy
y=a(e, -¢,) - L).a::nni- sin 27 (fxt—.§> (10)

This resultant wave corresponds to 2 new wave having the same frequency f,

But with an amplitude, 2a-.sin¢/2. U ¢ is very small, the resultant amplitude
will be nearly zero.l As a result, equation (10) suggests that the radial t -acking
error as given by eqixation (2) will oscillate with the same frequency as the
orbital frequency but with arﬁplitude determined by any phase difference between
the computed and observed orbits. A phase differcence in the ecceniric a_nomaly
however, is equivalent to one in both the true and the mean anomaly also. Since
the orbital periods are the same here, then a phase difference between the two
eccentric anomalies arises for exam_ple from a pocr determination cf the
argument of p_éi‘igee. Near the beginnirg of the orbit thcrefore, this uncertainty

in the a.rgdment of perigee will be a factor in the magnitude of the rapid

oscillatory term of equation (10).

- ———h
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Let us now con.sidex-' the case of hv§ wavetrains si_milar to the above, but
wit_.h' s_lightlly diffe;r-ent frequencies, travellirg through the same region.. The two
displacgments can__i)e represented as |

yy=acos 2nf, t - Iael. _ | 62 3)
. and '.

¥y, = a cos(2nf,t - ¢) - ae,. _ (12)
The d_iffere_aucé is

| | £, - f £+ f :
- . 1 . 1 2 &
Y-Yl_ -v,=a(e,-¢,)~-2asin l—’.".'.'v (—_2> t +%' snn_[?-n(—2_)t -5].(13)

C 2
The resulting vibration may then be considered to have a frequcncy

_ f o4+ f
f=21_2

2
which is the average of the two waves, and an amplitude given by the expression

in the brackets. Therefore, the amplitude varies with time with a frequency:

If f andf, are nearly equal, this term is small and the amplitude fluctuates
slowly. This phenomenon is a form of amplitude modulation and is commonly

referred to as 'beats'. A beat, or a maximum of amplitude will cccur whenever

f, - f i
sin2n[(‘2 2)t+%] |




u
equals lor -1. In orb;ltal'x'notion. the frequency of rotation is governed [.)rima.rily
by the value of t’ scr.ni—major axis. This deménds thaty, andy, of eqﬁations {11)
and (12) contain different values of a, whilch would .r-esult_. in a numerical determi-
ration of yl ~ y, versus time. However, since amplitudes only add togethe; -
algebraically, the general behavior of the system is still describcél analytic.allly
by equation (13). Tﬁe interference of t-wo waves of differ-enf, amplitudes, {re-
(.guencies, and phases, would o_rdinarily result in a distorted complex waveform,

but the analysis of equations (1) and (2) can hé made more directly through

equations (10) and (13). Equation (13) implies that errors in the computed value

of the semi-major axis, and to a lesser degree, the - ~centricity and argument

e e

of perigee determine both the amplitude and the {-equency o_f the envelope of the
radial tracking érror (Figure 1). Equation (19) indicates that any distortion in
the envelope is due to a timing error in the mean anomaly. If the semi-major
axes of the two systems'ﬁnder comparisons are almost equal initially, then the

correspondin; frequencies or periods are likewise almost identical. Because

of this, the advance of perihelion for each orbit is approximately the same, and
the angular difference between each perigee (or apogee) increases slowly. : )
When this difference is 7, the vespective apogees are exactlv out of phase, and

the magnitude of their difference is at its maximum. This is also the maximum

of the amplitude of equation (13). If the periods are long, a1 1 in addition, if

~ they are close in value, then the time between succeeding maxima may be very

large. Figure 2 shows a plot of the radial error versus time .or the cannonball

.,.
e o e M S s T




12

(OAR-901) satellite (a = 8335.34 km, e = 0.123, arnd i = 92.00 degrees). The
graph was éenerated using the Brouwer theor_y_ of artificial satellite motion
(Reference 2). For the calculatior, the potentials used only the first two zonal
harmonics,'with the second zonal zoefficients given by J, = -1.0825 x 1073 and
J, =0.90 x J,. In this case, the pzriod between maxima (or minima) is approxi-
mately 120 days (Figure 2). The value of the eccentriciﬁy determires the
symmetry characterl' of the oscillation. I e is much different from zero, then
Kepler's law demands that the spacecraft spend raore time near apogee. When
the two orbits are essentially coincidental, the por "*ional differences are
smallest As the angle between the major axes increases, these differences
increase, and the maximum is obtained when this angle is 7, and as described
above, when the spacecraft are at their respective apogee points. Between

7 and 27, the position differences decrease, becoming a minimum at 27. if the
reference orbit is 'larger' that is, if the semi-major axi,s of the reference
orbit is larger than that of the 'c—omputed' orbit, then radial error will 'arc'
positively. As the angle between the positional differences, in the plane of the
reference orbit increases, the magnitude of their difference will also increase,
and the envelope of equation (13), given by

[Za sin ”W(f' — fz)t +."‘i
- 2 2

[~

will also reach its maximum value given by twice the semi-major axis. The

time for this to occur will depend on the value of f; - f,. In Figure 2, the

10
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i maximum of '_tt'xe_variation is approximately 16,000 km. The consfant term
i a(ez-_ -e)) 'alsq represents a shift about which the radial error oscillates.

. We can _nd\_v summarize bricfly. A cocmparison of a plot (_)f equation (2)

R s

“and equation (13), shows the following: An 'error' or imcerta.inty in the
' ecéentricity will appear as a shift along the ordinate axis, about which an

; ‘oscillation in t:me of the radial error occurs. This oscillation is of frequency

(f'l'+f 2 )/2 wheref , and I, represent a computed and observed orbital frequency.

WAL oy

This rapid oscillation which is close to both f; and f, is then modulated by a much
3 lower frequcncy oscillation of value (f, - f, )/2, and with amplitude 2a. The

frequency of the orbit varies inversely as the period, and the period is a function

T SF

of the semi-major axis. As a result, a difference between the computed and

VTG T AT

observed values of the semi-major axes results in a finite value of f; - f,, and
a slow meodulation of the rzpid radial oscillation appears. The result
suggests a beat phenomena, common in the theory of sound. The beat frequency

is given by (f, - £,)/2, and as f, approaches f,, that is, as the difference between

it R i bed o S e S e Al L

the computed and observed values of the semi-major axes approaches zero, the
period of the beat phenomena becomes large.
3 We now turn to the discussion of the nature of the cross track error given

, - by equation (1). Let us assume that at the initial time, the six orbital param-

eters which describe the computed system differ slightly from those of the

observed orbit. At some later time, we also assume that the component

Lol

of the positior vector of the spacecraft from the observed orbit into

: 11
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the corresponding iine of nodes is r, . COoS U,, wherer, =a,(1 -e, cos E,),

U, =y oy, Wy is thé argument of périgee, a.ﬁd v, .is the tr};e anomaiy.’ .For
the computed orbit, we Ihave similarly-,-.rl cos u, along its line of nodes.l The
‘wave trains, represented by r, cos u, _a,nd- i‘x cos u, need to bé referencéd

to a common axis to discuss interference effects. However, for the cross-
track error component, we neéd the perpendicular component of the observation
on the calculated orbit, and hence, we wish to have the two wave trains interfere
with each other but at right anjles. Physica.lly; this is the same as sighting
parallel to the r, c'os u, wax)é, and cbserving the oscillatory behavior of the

r, cosu, v:ave wjth respect to the first. Therefore, the projection of r, cos u, _
onto the line of nodes of the computed orbit is given by r, cos u,-sin (Q2 -§),
where Q, and Q, are the respective right ascensions of the ascending node for
each orbit. Since tt_le observed system is inclined at an angle i,, the projection

is not perpendicular to the computed orbii. The pérpendicula.r component is

obtained by a rotation through this inclination. The result is

Yo =a,sin i, sin(Q, -~ Q;) [cosw,* cos E,

--»/l--egsinwz'sinEz—e2 cos “’2]' (14)

However, since the observed and computed orbits are not parallel, there is
another contribution to the cross-track term originating from the discrepancy
in the inclinations. Results show that both this ferm and its variation are

very small. Nevertheless, its contribution is,-

12




i : 15
Yy = rysin(i, - i) =a,(1 - e, cos §)) sin(i, -~ i) (15)
The sum of (14) and (15) give the result we want, nan 'y,

VEYG+Y, = a, sin i,-sin(Q, - 0,) [cos o, *cos E,

-vl-elsinw, *sinE, - e, cos w,]

+a,(l - e, cos E,) sin(i, - i,). _ (16)
If e is sufficiently small, we have,
y=a,lsini, - sin(, - Q,)  cos(E, +a,) +sin(i, - i (17)

The angular velocity of the eccentric anomaly is much greater than that of the argu-

! ment of perigze (usually two orders of magnitude), so that the cross-track error
dizplays a rapid oscillation with a frequency approximately that of the orbital
frequency, modulated by a slowly increasing sinusoidal function with maximum
amplitude a, sini, . This is again analogous to hezf phenomena, and the i
respective maxima are obtained when the two orbit systems diff2r in their
values of the ascending rode by 7/2. Figure 3 shows a plot of the cross-track
error for the Cannonball satellite using the above values of J, and J}. The beat
period or that pericd between successive minima (or maxima) is seen to be

' approximately 870 days for this case. Equations (16) and (17) suggest that as

- the values of the computed and observed right ascensions become more in

agreement, the beat period becomes progressively larger, with 2 maximum

e —— b S ot oA = St e AR I e g AN o Pl 1 S -
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.amplitude.'of a si_n- i. In our example, i = 92°, sothatsini¥ 1, and the maximum

theoretical cross _t'rack amplitude according to equations (16) and ('17.) is approxi-’
matel_y'_SOOO'km, which is in close agreement to that given by equation (1).

'F'igure's 4 and 5 illustr ate the use of equations (1) and (2) in the determina-

tion of the cross and radial tracking error for a small portion of the orbit of the

GEOS-ﬁ satellite {a = 7700.00 km, e = 0.932, and i = 105.80 degreés). The tracking
data 'c_onsistec-! of Navy Tranet Doppler 'observa-tions recorded by a globally dis-
tributed set of tracking stations. The orbils were computed using the GSFC
GEM-1 (Reference 3) and the SAO 1369 (Reference 4) Standard Earth gravity
models. Perturbations due to solar-lunar gravity, direct solar radiation pressure,
and air drag were also modelled in the solutions, so that the primary error

source is the Earth's gravity field. The orbital solutions were obtained using
tiie GEODYN orbit and geodetic parameter estimation system. For both the

GSFC GEM-1 and SAO 1969 cases, orbital arc lengths of two days were used
covering the periods 12 hours, 15 r-ninutes of May 23, 1968 to 12 hours, 15 minutes
of May 25, 1968, and 12 hours, 15 minutes of May 24, 1968 to 12 hours, 15 minutes
of May 26, 1968. The cross and radial tracking errors weie determined during
the one day overlap from 12 hours, 15 minutes of May 24, 1968 to 12 hours,

15 minutes of May 25, 1968. Because of the short period over which the calcula-
tions were performed, the periods of the beat phenomena for both the radial

and cross track terms are not shown. According to equations (13) and (17),

the curresponding maxima are 15,400 km and 7700 km: respectively for these

14
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fitted arcs. An examiration of the radial error for the GEM-1 case shows a

o el

slowly increasing envelope, but with a downwafd drift, indicating that the

computed value of the semi-major axis is larger than the observed value. To

"E . determine this latter valué, we would p_rpceed in the following manner: The
g . - '
o radial oscillatory period, P is read off of the graph (Figure 4 or 5). From this,
B _ fo+f
¢ f-_0%c_1 (18)
N 2 F
E "Using the fitted data for this arc, the computed period I, is calculated by .
i ]
E ' }
E T, = 2mp~1223/2 (19)
; e
3 where a is obtained from the orbit improvement process. Therefore f, = 1/P_.
The observed frequency {, is then given by
3 — 20 ]
§ fo=2f~f_, _ (20) i
and from this, ;
L.
1 21
. Po= g @y
0
% From the expression for the period such as equation (19), the observed value of
f the semi-major axis is obtained. The difference between this and the fitted
; value of the szmi-major axis gives us the discrepancy in the latter. Figures 4
1 , :
4 . : : —
P - : and § are not sufficiently expanded to give accurate values of P and a (e, - e,).

The magnitudes of the radial errors for these two graphs indicate a slightly

more serious phasing problem or uncertainty in the arguinent of pefigee for the

15
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Standard Earth solution. On the other hand, the slope of the radial envelopes
suggests that the Stondard Earth value of the semi-major axis may be closer
to the obsex_-ved value than that of GEM-1. This could be resolved by a c.alcula-
tion such as given above.

For the cross track component, the time scale of figu_res 4 and 5 are tco
short to make an accurate estimate of the discrepancy in the right ascension of .
the ascending ncde for the Standarc. Earth and the GEM-1 cases, as described
by equation (17).

In this sectioﬁ, we have attempted to reduce the analysis of the cross and
radial tracking errors given by equations (1) and (2) above, to an analysis of
the resultant behavior of the interference of two oie-dimensiona! 'celestial
mechanical wave trains'. These results, namely .quations (13) and {17), then
describe the behavior of, and the discrepancies be.’.ween.l the computed and
observed values of the orbital parameters for a given potential or gravitational
field for any arc of the orbit. The radial wave equation gives information on the
semi-major axis, the eccentricity and to a limited extent, the argument of perigee.
The cross track wave equation gives information on the right ascension of th(;r
ascending node and the incknation. Thus, five of the six orbital parameters are
examined by this procedure. This leaves only the mean anomaly. To accurately
assess its behavior and any discrepancy between the observed and computed value
of this parameter, it i3 necessary to make a careful analysis of the corresponding

in-track error component. From Kepler's law, it is obvious that for different

16
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values of the sidereal inean motion, two orbits will sweep out di ferent equal
areas aﬂd different values of the true anomaly in equal times, From the anomaly
conﬁedtions beﬁeeh the trie and eccentric anomaly and using Kepler's law, the
mean anomaly,

M=E-csinE ' (22)

“will vary accordingly.

1v. fREQUENCY EQUATIONS

In the previous section we discussed the analysis of the tracking errors by
relating their behavior to uncertainties in the orbital parameters. By this
approach, we wish to asce:xtain the degree to which these orbital parameters

arc involved in the accuracy of the trajectory calculation. In this section

however, we attempt to relate the behavior of the radial and cross track errors
to certain of the coefficients of the Earth's gravitational field. As a result, some
information can be derived from the relationship between these orbital parameters
and the values of gravitational coefficients used in the calculations.

As a starting point for our calculation, let us consider the following expres-
sion for the gravitational potential V(r, ¢), written in terms of an expansion in

spherical harmonics:

vt Pinre o s AR et T ek L & 4 = A PR ey e 7 it e

-]

n
X r
¢
v=£ 14 J {—] P (cos ). (23)
r AT n .
nzl i
1
. 2
3 y
4 3
3 1
= i
E 3
. 17 K
:
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In addition, we also consider the following problem: A spacecraft represented
by a point mass moves in orhit about a planet whose gravitatfonal potential is

given by equation (23). At some time which we shall take to be the epoch of the

orbit, an instantaneously small but finite impulse is applied to the point mass.

The problem is to describe the subsequent motion. We note that the impulse
has the effect of disturbing the coordinates of the satellite at this initial or
epoch time, while the poteniial field is constant. The Hamiltonian for this

system, which is also the total energy, can be written as

HzE= %mi" +%mr2t'7"2 « o2 sin? 642 4 v(r, 9). (24)

2

Here, the geocentric right ascension ¢ is cyclic, and as a result, its canonically

conjugate momentum

Py = mr? sin? & = constant. 4 (25)

We may intrcduce an effective potential 'V'(r, 6) for the motion:

2
. " p¢
V(r, &)= V(r, 6) + . (26)
2mr? sin? 0
If we now assume that the colatitude coordinate is held ﬁxed. and there is a
emall change inr only, then we have from equation (24).
E- ‘Vi(r) = 32- mi2, . | 27)

18
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Since the right Land member cannot be negative, the motion rmust be confined to

those values of r for which 'V'(r) £ E. The relationship between p A and the

equilibrium radius o, that is, the radius prior to the applied impulse is,

2
[d""(')] :(‘.’YQ) P o (28)
dr y dr /., mrd sin? g :
& c

Combining equations (28) and (25) we have,

g2 = (V) 1
r dr
r,_-

From equations (24) and {28) the equilibrium energy is

e (dV(r 1 .,
Ee =5 \"4r ), + V(re) + 3 mrt,
g

(29)

(30)

For an energy slightly larger than EE" and an angular momentum p¢ given by

equation (28), the coordinate r will perform simple harmonic oscillations about

the value T- If we set

- |'d2'v'(r)] =(d2wr)) . 3p;
r I_ dr? X dr? g mré
e £

Then for small values of (r - o ), we can expand 'V(r) in

g - _l_ 2
V(r)-EE+2kr(r-r8).

19

sin? ¥

(31)

a Taylor series:

(32)
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‘The energy equation (27), now becomes

1 .0 1 2 (33)
E-E,._Emr +-§kr(r rt,)

'This is the enex"gy for a2 harmonic oscillator with energy (E ~ E.), coordinate
(r.-r.) mass m, and spring constant k . Then for a small impulse, the radial
- (;onipbnent of the radius ve stor will oscillate about the equilibrium value r. with

‘a Irequeﬁcy'g‘iven by,

k 2 3p2
w2zt |1 <d V(r)) + pé - (34)
r m 2

m?r! sin? &
t-

I’S ol

It is of interest to compare «* and #2: From (29) and (34) we have,
4 1 4

1.2
w. T sz(r) 3p¢ —Imr, sin? ¥ dv(r) ¢ . (35)
r dr2 4 2 71 € dr fo :
r qJ l',c <

sin
rr

,f)

In other words, \ e now have the frequency of oscillation of the perturbed radial
component of the radius vector in terms of the undisturbed or equilibrium value
of the orbital period as given by the motion of the geocentric right ascension,
and the first and second derivatives of the gravitational potential energy. A
similar argument for the colatitude angle ¢, yields the harmonic oscillator

energy equation,

E-E,=

: 1
202 4 _ k(8 -~ 8.)2, 36
N mr +5 ( 8) (36)

[

with energy (E - E, ), coordinate (6 - t,,), mass mr2, and spring constant k
& 8

given by
20
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ORIGINAL PAGE 1.
OF POOR QUALITY
e S A oy - d’vw)‘) (sin? .4 3 cos? i) («W(_M) (37)
‘- -2 T\ a2 / ¥ sin¢ cos de /.0
q 7, P

o - B

The motion of the geocentric right ascension 1n the undisturbed mode is given

by,

. (,'g - -1 (dV(b‘)) . (38) -

mr? sin ¢, cos ¢, d

.while after the impulse is applicd, the colatitude aazular compouent of the radius

vector oscillates about the equilibrium value ¢ with a frequency given by

o2 = ko =1 d%(ﬁ') +. 1 (sin? '-‘/"._- + 3cos?r) <(1V(-1’>
( 2\ arr | mr2 sin . cos ¢ des

<

The relatiouships between «, and 10 is,

sin . ' ey
mr2 des? mr2 sin tc cos d y &

8 HIY (2N . 2.’;‘

y _j 1 <d2v(u)> i (sin fio+ 3cos? ) (dV(!/)) 2 .

ay = } — mr? sin ¢, cos o,
r

2
: 1'2 '
x/(""T@))) . (40)
du ”;-f

Here, the frequency of the angular component is also given in terms of the

equilibriun: value of the orbital period, and the first two derivatives of the
potential energy, but with respect to the colatitude.
At this point, it is instructive to choosc some representations for the gravi-

tational potential given by (23) and calculate «_  and «, for each case.

r
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Here -_t'hen.__

and

P " in density.’ The potentiai is then given by

'v"—‘ﬁ

r
dv(z) %
dr 7 Fg

and from equations (31) and (25),

From (29},

which yields,

and

-~

il ST

. _ 2# .2 .2
xr(#)_.;?+3m sin? 9¢ %.
g
: -H
¢y = :
(©) N
e mrd sin? @
~
3
kr(l‘) 3’
wz( )=.E:. = H .
t{n
m mr3
t
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: ) Case I Let us assume that the Earth is perfectly spherical, and homogeneous

{41 ).

(42)

“43)

(44)

49)
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in which case,
L2 - . '
¢y o1 (46)
w?(u) sin? 0,
or,
(47)

Deuy = sin 9¢r(#)

Since dV(r)/dé = 0 for the central force potential, then wg () = 0. Equation

(47) is an oscillation in r superposed upon a motion arcund the z-axis with an

.angdlar velocity given by equation (29); "ir(p.) will vary slightly as r oscillates, .

but will remain very nearly equal to the constant value giver by equation (43).
If our reference frame is rotated so that the z-axis is always perpendicular to

the orbital pla.ﬁe, 'then sin 6 =1, and eguation (47) reduces to

_d 48
“rqu) T Fruy (48)

For the case of t.he' spherical Earth, the radial component of the perturbed radius
vector has the same period of oscillation or rotation as that of the orbit, and will

execute one oscillation per revolution of orbit.

Case II. Let us now consider tne case where the Earth is represented as a

perfect rotational ellipsoid, and its potential is given by

r

2 .
v=£ [1 +l'3 (:f) (3cos? 6 - 1)] . (49)
2 \r .

Proceeding as in the above case we have for the r-dial component,
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@2 T S PR J,(3 cos? 6 - 1)},
r(pt]y) 3 2 o 2\r€ 2

mr, sin
“
. , . ]
3 fTe
_<._> J2(3c0529—1)].
2 \r,
S
- %3

3 2
1- T2t (Bcos?26-1)
Qré

siné’.< >

3 2
1+ ( er'>(3 cos?2 8- 1)
L € J

and

“r (et} 2) =

For the ¢ component,

2
k 3y, /T
o = 6 =____2<_e) cos? 4.,
B(uty,y = —— -
122 "2 e \ T £
and
“Bury,) = €05 Fpoury,y-

¢l‘(#+]2)'
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(50)

(51)

(52) |

(53)

(54)

(55)

Equations (52) and (55) are again referenced to our original fixed inertial z-axis.

By rotating the coordinate system so as to make the z-axis lie perpendicular to

the orbital plane, we again have that sin ¢ = 1, and cos 6 = 0, in equation (52),

while a rotation of x-coincidental with the radius vector wil' make cos 6, =1 in

24
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- equations (55). A {ransformation of these quantities irto the planes of motion of
i the tracking'-'error.-s are necessary to describe the oscillatory behavior of the

latter in terms of w, andwy . The fact that «p y = 0 for the spherical Earth ' -

results of course, frorﬁ the fact that \_A./e have in that case only central Lorce
motio.n\: As a ;;esult, if a small impu.l;se were ;ppued norrﬁél to the plane of
motion,.'}th(.a éi_.'fect would be o y to change slightly; the inolination of the orbit. . S
It w_ould ﬁoi&;éver, ferﬁajr. fixed at the new inclination. There would.be no oscillatory

motion"i,n . The second case, namely that of an Earth's gravitational potential

N L B L aTN TR Ay, A AT

containing a zeroth, and second zonal harrmnic only is somewhat more interest-

et b fe Ak Sk & B vcabne = e 2 mnn

ing. Equation (55) where cos i:’&, = 1, indicates that the ¢ ~component executes

one full cycle per revolution of the orbit, similar to the radial component given i

2~ s

by equation {47). Aft.r rotation, equation (52) reduces to,

2 1/2

: T2 A\

§ £ . r B
: @ty = bty (56) :
/ Tt 33,0 r N TR 3
: 14+ = : :
: r

J £ :

Here, we have included the sign of d,, the coefficient of the Earth's second zonal

harmonic. Since the magnitude of J, is approximatcly 0.10825 x 1072, ;hen the

1 coefficient of ¢ is only slightly less than unity. This means that the

r(r*3,)

—— AL

3 frequency of oscillation of the radial component of the perturbed radius vector

is also slightly less than the rotational frequency of the spacecraft in its orbit.
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i From this then, theh :-er_iod of revolution of the radial component given by P“’r =
; 27 /e, , Will b2 e ;21 than the natural beriod of -t_he- orbit, P&;- = 27T/<f.3r . This
. : . i .

frequency : aift, aud corrzponding change in period is induced by the inclﬁéion
of the Jz. te.'m or second zonal harmoni.c_i-n the Earth's potentiai. As a reéult,
the mass redistribution is equivalent toa chgnge in the spring constant of a

- : " translational mechanical circuit or the capacitance of the electriczi series

circuit. In this case, our results are now written,

Gewe s &7)

and

' = 58
@ (utyp) T Pouryy =8

In words, if a small but finits 'impulse is applied to an Earth satellite in orbit
about an Earth described by a.perfect rotational ellipsoid, the radial component

of the radius vector will oscillate about its equilibrium value with a frequency

whose value is

PN
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times that of the geocentric right ascension. The frequency in 6 is identical to
that of the geocentric right ascension. Also, the indication here is that we should
expect a shift in both the frequency of the radial and cross~track errors, as

either the number of, or the values of the coefficients of the gravitational potential

A T

terms is changed. To show that this may be true also for the angular compcnrent
we list the results of calculations for an Earih whose potential inclades the zeroth,
second and third zonal harmonics, and finally, the zeroth, second, third and

fourth zonal harmonics.

Case III.

e S N R AT AL B s 45 i ¢ e AR 4 et s T o

; 2
g V:L: [1+:22(;_:) (3cos?26-1)4 J3( ) (5 cos? 6 -~ 3 cos 9)] (59)

Here,

2

- =) 37,3 cos? 6 - 1) + 207, 2)
mr3 sxn2 2] e Te

x (cos3 6-3cos 6)]} , (60)
3 S

2

2 = "H .}_ r_°. - T ( 3p_ 3 9\
“reptyatin T n-;Tg {1 t5 <r€) |-312(3 cos? 1)+2013( 8) cos g cos j

. (61)

mlv-

] L2
A , ¢r(n+]2+13)

[1-
L
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e i r.\ : r ' ’. 172
' 14 ;—(—) EJZ(B cos? 6 -1y + 207, (T) (cos3 0 - Fcos o):_‘
. & ¢ :
@ sy, 435> = SING s
- 1 - — 3J,(3cos26-1)+20],(— (cos36-—cosﬁ>
2\r 2 r, 5
v 62)
APy riy
Also-..
o2
2 = _3_# f-f 2 -l:f- Scos 6, - 1 (63)
¢o(“”2”3) Imed \ T J2+ 5 ¥ t cos 6&,

2
3 re re l
2 = [t — 2 3 g - -
ue('”Jz’-‘a') 5T (r) [2]2 cos 9&' +J, (—r) (25 cos® g 8 cos 68 =3 )]

g
(64)
and
( r 8 : Y1/2
2J2 + J3 (—:) (25 cos G, - - )
r € cos 6, 3
7 = cos @ € cos' 8 L 7
AT PRSPl 9 (r ; CIPES PS8
2 —=}{s 6, -
Jz + J3 \l‘)( cos & Sos 98) (65)
- /
Case IV.

2 3
J r 5 r ( X 3 )
. 2( e 29_ 2 _* 3g_ 32
V-_r [11.-2-(;-) (3cos* @ 1)+2J3(r) cos 5cosB

! J

4
by
+5 74 (7’) (35 cos* 0 - 30 cos? 0 + 3% )

28
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f
. 3 2 .
;g O - 23,{<) (3cos26-1
¢ SARE REEREL LA Ry [l 2J2<r) @ eos )
. ._8 A ] &
3 ' .
- 10 e (00536 3 cos f))
I )
) . 4
5 re 4 . 2 .
-=1, (_) (35 cos* 6 - 30 cos 9+3E|. (67)
8 T,
- S
2
w? . K e} (3cos?o-1
f(ﬁ“"]z"Js"'J‘) = _':; +_J2 E ( COS = )
mr
+10], (—-) (<:os3 6‘—§cos (9)
\e
e \d
+§J‘ (.r_’.) (35cos* 6 - 30 co0s?26 + 3)]. (68)
. e/

2
s,
l+—3j2 (-—e-\ (3 cos?
2 Te,

“r(ut] 15410 = sin 6 J

r

' 3
r A
6—l)+10j3 (—e) (cosae—gcos -

(¢ 5]

3 cos?

[

1
N
Y

)
TN
I -
a
S~
™\

4
> (35 cos* 0 - 30 cos?26+3)

+—-J4(

"
a7

3

6-1)-107, (f) (Cos3 9'--§c056)

W:/z

-y

2]

(69)

5 r
-3 34 (r—) (35 cos* 8 - 30 cos? 6 + 3)

e
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and,
AN r !
2 =L (=) ]2 —) (s O -
¢9(-p+_]2+_'[3+]4) 2mr3(r)[J2+J3(r)(.cos € cos()&,>
, ,
T
L _s) (140 cos? @, - 60)|, (703
8 \r o

3ucos?6 2
8 r r 8 1
2 - —— =t = - -
IR TS TN 3 (r ) 2], + 17, (r )(25 cos &, Py 3 )

2nmr ¢ cos® @

€

2
J. /r
+ _‘(_:> (140 cos? 6, - 60)|. (71)
8 \r c

r
2]21»]3——e 25 cos 0 ~ 8_ -._._l___
r € cos Hg cos3 6.
= cos G, £

¢ re ! 1
21, +J.3 ey S cos ge-cosﬁ

€

“outy i3ty

1/2

1, ()’ ry 6
+§ -r— (140 cos 8- 0)

¢0(u+]2+13+1‘) (72)

J4 re ’
ts\7T (140 cos? 6&:'-60)

From the gereral equations (35) and (40, one can obtain q:-, /w, and ¢.a [, for
any number of zonal harmonics. It is of interest to compare the coefficients of
#, or the brackett terms of 433 andw? with the expression for the anomalistic

mean motion,

30
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S T r2y1 - e?
n=n 1+.§J AN, l_écoszﬂ . . © (73)
0 2 2 B 2
a(l - e?) .

_whefé' n, = (/a3 )12 for central force motion, a is the semi-major axis, and e

is the eeberitrit_:ity. The right hand side is expanded through the coefficient of
the second" zonal harmonic only, ‘and can be compared to equations (50) and (51)

for ¢2 andw?.

V. TIME AVERAGES
Figures 6(a) and (b) are pictorial representations of translational mechanical
and series electrical circuits. The general differential equations for these

systems are

2
(a) Mdy +m2 + ky =F, cos wt, translational mechanical.
dt? dt
v - .
(b) Ldi + g i + L= - «E, sinwt, series electrical. (74)
dt2 dt (o4

The vertical displacement coordinate of the weight is y, M is the vibi oting
mass, 4 is the friction, k, the spring constant, F;, and «, the amplitude and
frequency of the impressed driving force, respectively. For the electrical
case, L is the inductance, ¢, the capacitance, R, the resistance, E, and (N the
amplitude and frequency of the impressed voltage, and i, the curr.ent coordinate
flowing around the loop. If ~ (R) is zero, then the system is a conservative one.
If no driving forces are present, then the equations are homogeneous, and the

natural or resonant frequencies are given by

31
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The freguency be made to vary by changing the equivalent mass or spring con-
stant of the system. In our p;'oblem, the mass is constant but the restoring force
will depend upon t.he nuxﬁber o_f harmonics in-the [)otential. or iﬁ other words,

the distributior of the Ea-xjth’s mass. From our results above, if we take J, to
be approximately J, = -1.0825 % 107%, J, : 2.5450 x 1076, and J; =1.6715 x 10™° _
where » =1, then th_e effect of including the third and fourth zonal harmonics

is to shiitthe value of w and w,, vpposite to thit of J,. However, since J, is of
the order of 10° times J, or J,, the latter efiect is very small. In any event,
equations (35) and (40) predict a phase shift due to uncertainties and variations
in the terrmrs of the gravitational potential. Ti:e amplitude of the oscillation for

a free, conservative sy.stem, representing a s_olution of equations of the type (74)
is given by

N =N, cos(ugt + 8y), (76)
for the cross-track error, and
R=R; cos(w, t +3.), (77) _

for the radial uncertainty. Here N, and R, are the maximum error amplitudes
for each case, and & is a corresponding phase a.'gle. Since the epoch times are
taken to be the same for both observed and compuied cta, then the phase angle

is set equal to zero. Let us now examine the time averages of the .ross and
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radial uncertainties. The time averages of equations (76) and (77) are obtained

by integratihg both sides with respect to t from 0 to r, and dividing by 7 :

r T N
.1_ th'z-l. f N, cos aytdt = 1> [cos(wyT) - 1] 1 (78)
T ) 7 Jy T wy

Since No and w, are constant, when wy 7 = 2nm, wheren=29,1,2,..., then,

1 J; Ndt = 0. | (79)

T

That is, if 7 is chosen to be the period, then (78) vanishes., Even if «;7 is not
an integer multip.e of 27, the maximum value that the bracket portion of (78) can
be is 1, but choosing 7 sufficiently long, the right hand side of (78) can be made

as small as desired. In this case,

!
i
i

T
= 1
N= = f Ndt -0 (80)
()
Similarly,
I T
R= j Rdt ~ 0 (81)
T—=® -
0 ..
33
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Vi. CONCLUSIONS

'_ In .Isje.ction III,. we obtained relaiionshi;ss between the behavior of the radial and
Cross _traék errors’ and uncertainties in the orbital elements. In sec':ti-on IV, we
.found-__the quatidﬁs felating this bghavior to certain terms.of the Earth’s gravi-
taii_oﬁa_l_ field. An examination of figures 2, 3, 4', and 5, indicates that the tracking
errors_"ogciilate harrh:mically with a frequency close tb that of the orbital fre-
quéncy. Th_e wave interference analysis shows that the radial frequency is one
half th.e. sum of the observed and corﬁputed orbital frequencies. These frequencies
are functions of the semimajor axis of the orbit. ‘The analysis of section IV shows
that except for the case of a spherical Earth, the radial frequency is a function of
the gravitational potential energy and ihe orbital frequency. Both results are
consistent in that they show a proper {requency or phase shift for the radial
oscillation. Results for the cross track case are similar, except that this
phase shift does not appear until the computation potential includes the third
zonal harmonic or higher. This indicates that quantitatively, there appears to
be a lack of uncertainty in the eccentric anomaly and argument of perigee for
the spherical Earth case, which is reasonable, since the orbit is then bound and
closed and completely determined with full accuracy for all time.

From these considerations, there emerges the following physical picture

for the tracking error problem: The Earth-satellite system and the cor_responding
orbit di. ?erc'ances are considered as a harmonic oscillator system whose

frequency is determined by the ratio of the spring constant to the mass for the
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case of a translational mechanical system, or by the inverse product of the
inductance (inertia) times the capacitance (elastance) for an electrical series
circuit. In our case, the spring constant< or capacitances are describad in

terms of the first and second spatial derivatives of the Earth's potential. The

gravitational potential, which as a solution of Laplace's cquation, involves here,

" only the ordinary Legendre polynomials, and these in turn, are determined by the

distribution of mass in the Earth. This distribution therefore is described by the
_aséigned values of the coeif_icients of these zonal harmonics.

The results we have obtained in this paper are valid for conservztive systems,
namely those in which the total energy and angular momentum are conserved.
The frequeircy edualions that we developed in section IV-, assume an azimuthally
symmetric potential. Because of this, the corresponding canonical momentum
is a constant of the pxotion, and this led us to our analytic expressions for the
tracking frequencies as functions of the potential. An important technique in
theoretical physics is to look for symmetries within the system. For each
symmetry, there follcws a conservation law, which simplifies calculation of
physical properties of thé system. This approacn, combined with the method

of solution by separable Hamiltonian, makes it possible to do the gravitational

theory c{ a satellite orbit very accurately, and without the use of perturbation

theory (Refercnces 5, 6). In addition, a method has been developed (Reference 7)
which permits separation of the Hamilton Jacobi equation in the presence of a

nonconservative force such as air drag. In this case, the atmospheric density
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is incorbqfa:ed into the equations 6f motion in an analytic fashion by ﬁtting an
expdnenfial Iorm.to an accurate dénsity profile. This allows one té integrate
the v;af;:aﬁonal équations of the orbital elements due to air drag in terms of
elem:entary funct.ibns. This then has the effect of advancing the-bo@dary condi-
tions <.)n t};c Hamilton-Jacobi equation. As a reéult, it is’ possibie to in.c.lﬁde
' atmo_s_pherié resistance in orbital error analyéis.

| It is expected that the results obtained here especially those of sections I

z;nd IV, are to be extended in forthcoming anal&ses to more detailed cases such

as given in figures 4 and 5, for GEOS-II.
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FIGURE CAPTIONS
z Figu~e 1. Two waves of nearly equa_l frequeacy (a) and with equal magnitudes,
{ (b; are differenced, (c) to give a wave .‘fzrtnoSe ammplitude (dashed line) var-
‘f : ies periodically. The effect described from (b) to (c) i8 commonly
i .

i referred to as the phenomenon of beats. ‘
i
;L Figure 2(a). Short term view of the radial error for the Cannoniall satellite. :

d f Figure 2(b). Expanded time scale for the radial error of the Cannowuhall satellite,
& i
3 Figure 3. Expanded time scale of the cross track error for {he Cannonball f
L-_ 1
satellite. ;
3 Figure 4. Tracking errors for the GEOS-II satellite using GEM 1 (doppler data), ;
; i
: Figure S. Tracking errors for the GEOS-II satellite using 69 SAO Standard Earth '
(doppler data), f
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Figure 6. Physical syvstems whose natural frequencies are equivalent to tracking
£ error oscillations. 4
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Figure 1. Two waves of nearly equal frequency (a) and with equal! magnitudes, (b) are dif-
ferenced, (c) to give a wave whose amplitude (dashed line) varies periodically. The
effect described from (b) to () is commonly referred to as the phenomenon of beats,
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Figure 2(a). Short term view of the radial error for the Cannonball satellite
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Figure 2(b). Expanded time scale for the radial error
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Figure 6. Physical systems whose natural frequencies are equivalent
-to tracking error oscillations
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